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The use of complex mass in nonrelativistic quantum mechanics and its relation 
to the influence of vacuum field fluctuation in electron motion are discussed. 

1. I N T R O D U C T I O N  

In Pardy's work (Pardy, 1973) an at tempt was made to generalize 
Feynman 's  known integral by  the introduction of complex mass. The 
author in his work defines this integral as an infinite iteration product  of 
functions of the type K(xk+ l, tk+l; Xk, tk) multiplied by functions of type 
W(xk+i,  tk+l; x k, tk) (Morette,  1951). The probabi l i ty  ampl i tude 
U(x A, tA; x s, ts) is then given 

n - 1  

U(xA, tA;xB, tB)= lim f oo=.., f IX K(Xk+l , tk+l ,Xk ,  tk) 
n---~ Qo k = 0  

n 

• w(x~+,, t~+l; x,,, t~) II ax , ,8(xo-xA)~(x . -x . )  
k = O  

(1.1) 

Xk+ l, Xk in equation (1.1) are two one-dimensional points corresponding to 
an interval tk+ 1 - t k = e  infinitesimally small. With regard to factors K and 
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W the author defines them as follows: 

K(Xk+l, tk+l; Xk, tk)-~ lexp( f~ [ m (Xk+l--Xk ) 2 2k "~ --V(Xk+l)] 8} 

(1.2) 

1 [  (xk+~-xk)2 ] (1.3) 
[/V(Xk+ 1, t k + l ;  Xk, tk)-~ (4"fiDe) I/2 exp 4De 

Expression (1.2) describes the motion of a quantum particle (provided with 
mass m) in the Coulomb potential V(Xk+ 0 from point x k to Xk+ 1 in 
infinitesimal time interval e, whereas expression (1.3) describes the proba- 
bility that the classical particle characterized by a diffusion constant D 
arrives aided by the Brownian motion in the time interval e from x k to 
Xk+ 1" 

The key point of Pardy's work is his statement that the influence of 
vacuum field fluctuation (electromagnetic field, scalar field, etc.) on the 
quantum particle motion in the Coulomb potential V(Xk+I) from x k to 
x,+~ in the infinitesimal time interval e can be expressed by 

U(Xk+I, tk+l; Xk, tk)=K" W (1.4) 

Because the quantal motion of a particle, as described by the equation 
(1.2), is corrected here by the classical motion of the same particle as 
defined by equation (1.3) which is supposed, according to the author, to 
include the quantum motion of vacuum field fluctuation, expression (1.4) 
is without any physical content. 

2. DISCUSSION 

Now it is a trivial matter to show that (i) the assumption (1.4) is 
identical to the introduction of the complex mass concept as discussed in 
Nelson's well-known work since 1964 (Nelson, 1964); and (ii) the complex 
mass in the case considered, of the motion of an electron in the Coulomb 
field, does not include the influence of vacuum fluctuation. 

To prove point (i) it is enough to write the equation (1.4) as follows: 

U(Xk+ 1, Xk; E) = 1 i 

(2.1) 



Complex Mass in Nonrelativistic Quantum Mechanics 15 

where 

ih 
M = m +  2D (2.2) 

The normalization constant A in (2.1) can be determined from unitary 
condition (Morette, 1951) 

f?ooU* '" e)dxl,+, =8(x k (2.3) (xk+~, xk; ~)U(xk+ l, xk, -x, ,)  

and then the equation (1.1) can be written symbolically 

U(xA,tA;xs,ts)= f exp{ i s[ x(t)] ) ~[ x(t)] (2.4) 

where 

S[ x( t ) ] = I M ftj"~z( t ) d t -  ft~BV[ x( t ), t ] dt (2.5) 

is the Riemannian sum of infinitesimal actions 

(2.6) 

and owing to the fulfillment of condition (2.3) the equation (2.4) has 
mathematical meaning. 

Nelson, starting from (2.2), proved the following. (Nelson, 1964; see 
also Morette, 1969). 

(1) For M purely imaginary, i.e., D=ih/2M>O, the equation (2.4) is 
equivalent to the heat equation with a purely imaginary potential iV(x): 

P-~-~ = D  ~=~p -iV(x)~p 
0t ~x 2 

(2.7) 

and its solution is given by Wiener's integral. In this case equation (2.4) is 
reduced to Wiener's integral with purely imaginary potential iV(x). 

(2) For M real the integral (2.4) exists for almost every real value of 
the mass parameter M (except for M, which creates a set of Lebesgue 
measure 0). 

(3) For M complex the integral (2.4) exists for all complex values of 
the parameter M. 



16 Kyselka 

Point (3) assured the existence of the integral (2.4) in case of complex 
M. It is now a trivial matter to show that equation (2.4) does not include 
the influence of vacuum fluctuation on the electron motion. 

Let us rewrite the equation (2.4) to form 

f % x P (  i c'-f  < h.,,, 

(2.8) 

with 

ih tB. 2 ) 
z~, = T ~ f , ~  ~ (t at (2.9) 

and compare with the corresponding expression which includes the vacuum 
fluctuation and leads to the correct value of Lamb's shift in the case of the 
electromagnetic field (Feynman, Hibbs, 1965; Morette, 1969) or in case of 
the scalar fluctuation field (Nelson, 1963): 

f 4-~k [J,k(t)j~k(s)-F, jm,(t)j~k(s)]e-'kclt-'Idtds 
k 

(2.10) 

l(k)~a= ig-~-~-2 f cosk.[x(t)-x(s)]e-i'~(k)Lt-'Idtds 
4~0(k) 

(2.11) 

Relations (2.10) and (2.11) are valid for the interaction of a single particle 
with fluctuating electromagnetic or scalar field. Jlk and J2k are components 
of current density of the considered particle which are perpendicular to 
wave vector k, and kc = ~0 is the frequency of the considered fluctuating 
vacuum field. If constant D in relation (2.9) has the meaning of diffusion 
constant characterizing the Brownian motion of a classical particle, then 
comparing expression (2.9) with (2.10) we come to the conclusion that I e 
does not contain an interaction of the considered particle with a fluctuat- 
ing vacuum field. This is physically obvious especially from the fact that in 
equation (2.9) Feynman's famous propagator of the particle in an electro- 
magnetic field is missing, i.e., 

-ik~lt-~l =2ikc (~176 ei'~ doa 
e 

J _  oo Co 2 - k 2 c  2 + i e  2r 
(2.12) 
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